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Background (review)

Spatial Bayesian Inference analysis
published in Human Brain
Mapping, vol 7, p. 195, 1999.
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Bayesian inference

¨ Formal use of prior information.

¨ Results in a posterior probability distribution.

¨ Use Markov Chain Monte Carlo to numerically
generate samples from the posterior distribution.

¨ All inferences are drawn from the (numerically
sampled) posterior probability distribution.
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Example with simulated data

¨ Active region used to generate simulate data.
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Prior information

¨ Anatomical location and orientation information
from MRI.

¨ Neural activity limited to a variable number of
variable size active regions, defined by tagged
cortical voxels within a bounding sphere.
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Results from Spatial Analysis
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Results from Spatial Analysis

True Active Region

95% Probability Region
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Results from Spatial Analysis (continued)

Most Likely Result
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Results from Spatial Analysis (continued)
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Extension to temporal domain

¨ Sources have a temporal extent.

¨ Temporal correlation as prior information.

¨ Increase in information results in more rugged posterior
distribution.
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Example from Simulated Data

True Sources
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Sample Active Regions
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Sample Time-Courses for Anterior Region
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Distribution of Time-Courses
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Results in spatial and anatomical

domains
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Integration with fMRI
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Other integration strategies

¨ MGH: fMRI weighted MEG linear inverse.
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Multi-Scale Modeling
David Schmidt (P-21) Balu Nadiga (CCS-2) David Sharp (T-13)

¨ In non-linear systems, small scale dynamics affect large
scale behavior.

¨ Computer simulations of a system over a large domain
(e.g. ocean) require a very large grid to resolve small scale
phenomenon (e.g. eddies).

¨ Often a coarser grid, that does not resolve the small scale
phenomenon, is used in order for the simulation to run in
a reasonable period of time.

¨ The differential equations to be simulated are then
modified to try to mimic the effects of the unresolved sub-
grid phenomenon.
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Closure

¨ Original equation to be integrated

¨ Effect of fields on a grid

¨ Modify equations such that
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Stochastic closure

¨ There are many different continuous fields ( q(x) ) that
could have produced a given field on a grid (blue bar
graph).

¨ There should be a distribution of closure relations
from which elements are drawn at random as the system
is being simulated over time.

¨ This distribution may be found by simulating the system
on a fine grid, that resolves the small scale phenomenon,
but on a small domain.
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Example: simple basin model with
uniform wind forcing

¨ Effects of grid size on time-averaged stream function.
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Results from stochastic closure run

¨ Average stream function

Stochastic Coarse gridFine grid Coarse grid

Legend
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Results from stochastic closure run

¨ Temporal variability (standard deviation) of stream function

Stochastic coarse gridFine grid Coarse grid

Legend
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Stochastic closure summary

¨ Small-scale phenomenon are treated stochastically.

¨ Exact temporal ordering is lost but time-averaged
quantities (even multiple moments) are retained.

¨ Well-suited for uncertainty quantification.


